Clem’s paper on the interpretation of pump-probe experiments on the purple-bacteria light-harvesting complex LHII is now in print in J Phys Chem B.
Through careful and extensive calculations involving molecular dynamics, time-dependent density functional theory, and quantum dynamics we have shown that the interpretation of anisotropy decay rates in terms of strength of coupling to a dissipative bath is not so easily justified. The reason is that static (or inhomogeneous) disorder itself produces anisotropy decay at about the experimentally observed rate.
The paper also contains an epic, paper-length appendix on how to compute such quantities for the circularly degenerate oscillator model.
Congratulations Clem!
C. Stross, M. W. Van der Kamp, T. A. A. Oliver, J. N. Harvey, N. Linden and F. R. Manby, “How Static Disorder Mimics Decoherence in Anisotropy Pump–Probe Experiments on Purple-Bacteria Light Harvesting Complexes”, J. Phys. Chem. B, 120, 11449-11463 (2016), DOI: 10.1021/acs.jpcb.6b09916